Preview

Title

Advanced search

Modern serological and immunological tests for the diagnosis of viral disease

https://doi.org/10.48612/agmu/2022.3.1.15.19

Abstract

Modern serological and immunological tests are used for screening studies and prediction of the immune response, as well as for the diagnosis of viral diseases of different sensitivity. These methods play an important role in epidemiology and vaccine development, and also allow determining the number and diversity of antibodies. The most popular methods of enzyme immunoassay (ELISA), immunochroma­tographic and immunochemiluminescent assays in medical practice were identified. However, they are used to a limited extent to determine the status of infection (in combination with molecular genetic analyses), se­rological prevalence and the status of immune protection of medical workers.

About the Authors

K. Sh. Arnaudova
Astrakhan State Medical University
Россия

Kristina Sh. Arnaudova, Candidate of Medical Sciences, Senior Researcher, Deputy Head of the Research Center

Astrakhan

 



M. R. Kopylova
Astrakhan State Medical University
Россия

Mariya R. Kopylova, Researcher, Research Center

Astrakhan



Z. V. Zharkova
Astrakhan State Medical University
Россия

Zinaida V. Zharkova, Researcher of the Research Center, Assistant of the Department

Astrakhan



G. N. Genatullina
Astrakhan State Medical University
Россия

Guzel' N. Genatullina, Cand. Sci (Biol.), Deputy Head of the Research Center, Associate Professor of the Department

Astrakhan



References

1. Pryor J. Questions: How COVID-19 tests work and why they’re in short supply // MIT News: On Campus and around the World. 2020. URL: https://news.mit.edu/2020/how-covid-19-tests-work-why-they-are-in-short-supply-0410.

2. Theel E. S., Slev P., Wheeler S., Couturier M. R., Wong S. J., Kadkhoda K. The role of antibody testing for SARS-CoV-2: is there one? Journal of clinical microbiology. 2020; 58 (8): e00797-20.

3. Xia J., Tong J., Liu M., Shen Y., Guo D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. Journal of medical virology. 2020; 92 (6): 589-594.

4. Diao B., Wen K., Chen Ji., Liu Yu., Yuan Z., Han Ch., Chen Ji., Pan Yu., Chen L., Dan Yu., Wang Ji., Chen Yo., Deng G., Zhou H., Wu Yu. Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein. MedRxiv. 2020. URL: https://www.medrxiv.org/content/10.1101/2020.03.07.20032524v2.

5. Van Guilder H. D., Vrana K. E., Freeman W. M. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008; 44 (5): 619-626.

6. Udugama B., Kadhiresan P., Kozlowski H. N., Malekjahani A., Osborne M., Li V. Y. C., Chen H., Mubareka S., Gubbay J. B., Chan W. C. W. Diagnosing COVID-19: the disease and tools for detection. ACS nano. 2020; 14 (4): 3822-3835.

7. Hinton D. M. Emergency Use Authorization for qSARS-CoV-2 IgG/IgM Rapid Test (Cellex Inc.). Clinical diagnostics. 2020. no. 2. P. 1-8.

8. Maxim L. D., Niebo R., Utell M. J. Screening tests: a review with examples. Inhalation toxicology. 2014; 26 (13): 811-828.

9. Food U.S. Drug Administration. Accelerated Emergency Use Authorization (EUA) Summary SARS-CoV-2 Assay (Rutgers Clinical Genomics Laboratory). Journal of Clinical Microbiology. 2020; (5): 1-8.

10. Kujawski S. A., Wong K., Collins J. P., Epstein L., The COVID-19 Investigation Team. First 12 patients with coronavirus disease 2019 (COVID-19) in the United States. MedRxiv. 2020. URL: https://www.medrxiv.org/content/10.1101/2020.03.09.20032896v1.

11. Takeuchi Y., Furuchi M., Kamimoto A., Honda K., Matsumura H., Kobayashi R. Saliva-based PCR tests for SARS-CoV-2 detection. Journal of oral science. 2020; 62 (3): 350-351.

12. Che X. Y., Qiu L. W., Pan Y. X., Wen K., Hao W., Zhang L. Y., Wang Y D., Liao Z. Y., Hua X., Cheng V. C., Yuen K. Y. Sensitive and specific monoclonal antibody-based capture enzyme immunoassay for detection of nucleocap¬sid antigen in sera from patients with severe acute respiratory syndrome. Journal of Clinical Microbiology. 2004; 42 (6): 2629-2635.

13. D’Annessa I., Marchetti F., Colombo G. Differential antibody recognition by novel SARS-CoV-2 and SARS-CoV spike protein receptor binding domains: mechanistic insights and implications for the design of diagnostics and therapeutics. Journal of Clinical Microbiology. 2020; 69 (3): 1619-1625.

14. Nieto-Callejas M. J., Cardona-Maya W. D., Isaza-Merino C. A., Cardona-Maya Ya. Diagnosis of COVID-19 and innovative alternative methods based on optic fiber immunosensor. Ingenieria y competitividad. 2021; 23 (2): 18-24.

15. Yang X., Sun X. Chemiluminescent immunometric detection of sars-cov in sera as an early marker for the diagnosis of sars. The Journal of infectious diseases. 2005; 139: 491-494.

16. Cai X. F., Chen J., Li Hu J., Long Q. X., Deng H. J., Liu P., Fan K., Liao P., Liu B. Z., Wu G. C., Chen Y. K., Li Z. J., Wang K., Zhang X. L., Tian W. G., Xiang J. L., Du H. X., Wang J., Hu Y., Tang N., Lin Y., Ren J. H., Huang L. Y., Wei J., Gan C. Y., Chen Y. M., Gao Q. Z., Chen A. M., He C. L., Wang D. X., Hu P., Zhou F. C., Huang A. L., Wang D. Q. A Peptide-Based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Coronavirus Disease 2019. The Journal of infectious diseases. 2020; 222 (2): 189-193.

17. Whiteman M. C., Antonello J. M., Bogardus L. A., Giacone D. G, Rubinstein Leonard. J., Sun D., Tou A.H.M., Gurney K. B. A virus neutralization assay utilizing imaging cytometry. Patent USA, no. 17266827, USA. 2021.

18. Wood C. S., Thomas M. R., Budd J., Mashamba-Thompson T. P., Herbst K., Pillay D., Peeling R. W., John-son A. M., McKendry R. A., Stevens M. M. Taking connected mobile-health diagnostics of infectious diseases to the field. Nature. 2019; 566 (7745): 467-474.

19. Kontou P. I., Braliou G. G, Dimou N. L., Nikolopoulos G., Bagos P. G. Antibody tests in detecting SARSCoV-2 infection: a meta-analysis. Diagnostics. 2020; 10 (5): 319.

20. Park T. J., Hyun M. S., Lee H. J., Lee S. Y., Ko S. A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta. 2009; 79 (2): 295-301.

21. Antiochia R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to per-spectives. Microchimica Acta. 2020; 187 (12): 1-13.

22. Alsohaimi I. H. Analytical detection methods for diagnosis of COVID-19: developed methods and their per-formance. Biotechnology & Biotechnological Equipment. 2021; 35 (1): 196-207.

23. Khan S., Nakajima R., Jain A., de Assis R. R., Jasinskas A., Obiero J. M., Adenaiye O., Tai S., Hong F., Milton D. K., Davies H., Felgner P. L., Prometheus Study Group. Analysis of serologic cross-reactivity between com¬mon human coronaviruses and SARS-CoV-2 using coronavirus antigen microarray. The Journal of infectious diseases. 2020; 222 (2): 118-129.


Review

For citations:


Arnaudova K.Sh., Kopylova M.R., Zharkova Z.V., Genatullina G.N. Modern serological and immunological tests for the diagnosis of viral disease. Title. 2022;3(1):15-19. (In Russ.) https://doi.org/10.48612/agmu/2022.3.1.15.19

Views: 382

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-8164 (Print)