Preview

Title

Advanced search

Morphofunctional and therapeutic aspects of facial and ocular motor synkinesia

https://doi.org/10.17021/2712-8164-2025-2-16-27

Abstract

Peripheral synkinesis is involuntary muscle contractions during voluntary movements. Most often, they occur in the craniofacial region after damage to the facial or oculomotor nerves (III, IV, VI, VII pairs of cranial nerves) and significantly worsen the quality of life of patients. Analysis of modern literature (67 publications for 2020–2025) shows that their key mechanism is aberrant axonal regeneration, supplemented by ephaptic transmission, hyperexcitability of brainstem nuclei and cortical reorganization. The uniqueness of these synkinesis is due to several anatomical and physiological factors: strong branching and short length of the affected nerves, resistance of extraocular and facial muscles to denervation and the presence of alternative sources of proprioception. Trigger points, being an early marker of denervation in facial palsy, increase hyperexcitability of the nuclei of the brainstem and require mandatory inactivation. It is important to note that true contractures of the facial muscles are absent; tonic forms of synkinesis or myokymia are mistaken for them. Cicatricial and fatty degeneration are characteristic only of congenital defects of the innervation of the eye muscles. The use of peripheral synkinesis in kinesitherapy methods for the rehabilitation of peripheral paresis of the craniofacial muscles is not pathogenetically justified.

About the Authors

K. B. Petrov
Novokuznetsk State Institute of Further Training of Physicians, Novokuznetsk, Russia
Россия

Konstantin B. Petrov, Dr. Sci. (Med.), Professor, Head of the Department



O. O. Evdokimova
Novokuznetsk State Institute of Further Training of Physicians, Novokuznetsk, Russia
Россия

Oksana O. Evdokimova, Assistant



N. V. Popova
Novokuznetsk State Institute of Further Training of Physicians, Novokuznetsk, Russia
Россия

Natalia V. Popova, Assistant



References

1. Boahene K. D. O. Etiology, Epidemiology, and Pathophysiology of Post-Facial Paralysis Synkinesis. Available at: https://www.sciencedirect.com/science/article/pii/B9780323673310000026 (accessed: 07.11.2024).

2. Petrov K. B., Mitichkina T. V. Post-Stroke Synkinesis: Clinical and Rehabilitation Aspects. A Review. Vestnik vosstanovitelnoy meditsiny = Bulletin of Rehabilitation Medicine. 2025; 24 (1): 75–83. doi: 10.38025/2078-1962-2025-24-1-75-83 (In Russ.).

3. Guntinas-Lichius O., Prengel J., Cohen O., Mäkitie A. A., Vander Poorten V., Ronen O., Shaha A., Ferlito A. Pathogenesis, diagnosis and therapy of facial synkinesis: A systematic review and clinical practice recommendations by the international head and neck scientific group. Frontiers in Neurology. 2022; 13: 1019554. doi: 10.3389/fneur.2022.1019554.

4. Curi I., Souza-Dias C. Varied presentations of congenital ocular synkinesis: do they all fit congenital cranial dysinnervation disorder spectrum? Arquivos Brasileiros de Oftalmologia. 2021; 84 (4): 374–379. doi: 10.5935/0004-2749.20210065.

5. Jurgens J. A., Barry B. J., Chan W. - M., Engle E. C., Mackey D. A., Wentzensen I. M., Bhoj E. C., Bamshad M. J., Mefford H. C., Nickerson D. A., Shendure J., Khoury M. J., Zastrow M. S., Duncan J. L. Expanding the genetics and phenotypes of ocular congenital cranial dysinnervation disorders. Genetics in Medicine. 2025; 27 (4): 101216. doi: 10.1016/j.gim.2024.101216.

6. Baskar D., Vengalil S., Nashi S., Netravathi M., Taly A. B. Respiratory Shoulder Synkinesis: A Rare Case Report. Annals of Indi-an Academy of Neurology. 2023; 26 (4): 610–611. doi: 10.4103/aian.aian_235_23.

7. Chekhonatskaya K. I., Zavaliy L. B., Ramazanov G. R., Krivoshey E. A., Chekhonatskiy A. V. Synkinesis in patients with neuropathy of the fa-cial nerve. Rossiyskiy nevrologicheskiy zhurnal = Russian neurological journal. 2022; 27 (5): 14–22. doi: 10.30629/2658-7947-2022-27-5-14-22 (In Russ.).

8. Su J., Yang M., Teng F., Zhang M., Zhang L., Wu Y. Synkinesis in primary and postparalytic hemifacial spasm: Clinical features and therapeutic outcomes of botulinum toxin A treatment. Toxicon. 2020; 184: 122–126. doi: 10.1016/j.toxicon.2020.06.004.

9. Rodríguez P. N., Mourelle M. M. R., Diéguez P. M. Síndrome de Marcus-Gunn. Revista Cubana de Pediatría. Available at: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75312020000200014&lng=es (accessed: 24.10.2024).

10. Vijayalakshmi A. S., Koushik T. Marcus Gunn Jaw-Winking Syndrome. StatPearls [Internet]. 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK559058/#article-24742.s19 (Accessed October 25, 2024).

11. Chuang D. C.-C., Chang T. N.-J., Lu J. C.-Y. Postparalysis Facial Synkinesis: Clinical Classification and Surgical Strategies. Plastic and Reconstructive Surgery – Global Open Data Index. 2015; 3 (3): e320. doi: 10.1097/GOX.0000000000000283.

12. Saldanha C., Daigavane S. Marcus Gunn Jaw-Winking Phenomenon and Monocular Elevation Deficiency in Association With Congenital Ptosis. Cureus. 2023; 15 (1): e33817. doi: 10.7759/cureus.33817.

13. Petrov K. B., Ivonina N. A., Mitichkina T. V. Motoric Automatisms of the Maxillofacial Region: a Lecture. Vestnik vosstanovitelnoy meditsiny = Bulletin of Rehabilitation Medicine. 2022; 21 (6): 145–155. doi: 10.38025/2078-1962-2022-21-6-145-155 (In Russ.).

14. Xiang G., Sui M., Jiang N., Lu L., Zhang X., Li H., Chen M., Wang J., Liu Y. The progress in epidemiological, diagnosis and treatment of primary hemi-facial spasm. Heliyon. 2024; 10 (19): e38600. doi: 10.1016/j.heliyon.2024.e38600.

15. Patel K. R., Goyal-Khonavar A., Dhawal S., Pandey A., Singh S. Myokymia of the face with hemifacial contracture as the only manifestation of pontine glioma: clinical video. Annals of Movement Disorders. 2025; 8 (1): 65–67. doi: 10.4103/aomd.aomd_70_24.

16. Blitzer A. L., Phelps P. O. Facial spasms. Disease-a-Month. 2020; 66 (10): 101041. doi: 10.1016/j.disamonth.2020.101041.

17. Chu E. C., Trager R. J., Chen A. T. Concurrent Bell\'s Palsy and Facial Pain Improving with Multimodal Chiropractic Therapy: A Case Report and Literature Review. American Journal of Case Reports. 2022; 23: e937511. doi: 10.12659/AJCR.937511.

18. Citron I., Thomson D., Pescarini E., Marca C., Gururangan R., Mosahebi A., Tollefson D., Ishii S., Ishii K., Byrne P. Descriptive Study of Facial Motor Cocontractions During Volun-tary Facial Movement in a Healthy Population: A New Hypothesis Contributing to Synkinesis. Facial Plastic Surgery & Aesthetic Medicine. 2023; 25 (3): 244–249. doi: 10.1089/fpsam.2022.0072.

19. Shokri T., Patel S., Ziai K., Ishii S., Ishii L.E. A Facial synkinesis: A distressing sequela of facial palsy. Ear, Nose & Throat Journal. 2024; 103 (6): 382–391. doi: 10.1177/01455613211054627.

20. Xinying H., Wei W., Wei D. Mechanisms and Management of Postparalysis Facial Synkinesis. Chinese Journal of Plastic and Reconstructive Surgery. 2021; 3 (2): 89–94. doi: 10.1016/S2096-6911(21)00089-3.

21. Tsai T. I., Dlugaiczyk J., Bardins S., Huppert D., Zwergal H., Jahn K., Dieterich M., Gürkov R., Schneider P., Schneider E. Physiological oculo-auricular-facial-mandibular synkinesis elicited in humans by gaze deviations. Journal of Neurophysiology 2022; 127 (4); 984–994. doi: 10.1152/jn.00199.2021.

22. Ma Z.-Z., Lu Y.-C., Wu J.-J., Xu X.-L., He J.-H., Li H.-L., Xu X.-Y., Zhang L.-J. Alteration of spatial patterns at the network-level in facial synkinesis: an independent component and connectome analysis. Annals of Translational Medicine. 2021; 9 (3): 240. http://dx.doi.org/10.21037/atm-20-4865.

23. Liu J.-X., Dennhag N., Domellöf F. P. Understanding the extraocular muscles: connective tissue, motor endplates and the cytoskeleton. Biochemical Journal. 2020; 42 (5): 52–57. doi: 10.1042/BIO20200062.

24. Blumer R., Carrero-Rojas G., Calvo P. M., Lischka T., Streicher M., Sticova E., Kopp M., Klima L., Mayr M., Mayr R. Proprioceptors in extraocular muscles. Experimental Physiol-ogy. 2024; 109 (1): 17–26. doi: 10.1113/EP090765.

25. Carrero-Rojas G., Calvo P. M., Lischka T., Streicher M., Blumer R. Eye Movements But Not Vision Drive the Development of Palisade Endings. Investigative Ophthalmology. 2022; 63 (11): 15. doi: 10.1167/iovs.63.11.15.

26. Sun Y., Fede C., Zhao X., Petrelli L., De Caro R., Porzionato C., Macchi V., Natali A. Quantity and Distribution of Muscle Spindles in Animal and Human Muscles. International Journal of Molecular Sciences. 2024; 25 (13): 7320. doi: 10.3390/ijms25137320.

27. Omstead K. M., Williams J., Weinberg S. M., Seegmiller R. E., Rafferty K. L., Herring S. W., Yano T., Kawai M., Abe S. Mammalian facial muscles contain muscle spindles. The Anatomical Record. 2023; 306 (10): 2562–2571. doi: 10.1002/ar.25172.

28. Tereshenko V., Dotzauer D. C., Maierhofer U., Meng S., Schmoll M., Girsch R., Aszmann O. C. Selective Denervation of the Facial Dermato-Muscular Complex in the Rat: Experimental Model and Anatomical Basis. Frontiers in Neuroanatomy. 2021; 15: 650761. doi: 10.3389/fnana.2021.650761.

29. Cobo J. L., Solé-Magdalena A., Menéndez I., Pérez-Piñera M., Vega J. Connections between the facial and trigeminal nerves: Anatomical basis for facial muscle proprioception. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2017; 12: 9–18. doi: 10.1016/j.jpra.2017.01.005.

30. Cobo J. L., Junquera S., Martín-Cruces J., Solé-Magdalena A. Proprioceptors in Cephalic Muscles. Proprioception: IntechOpen. URL: https://doi.org/10.5772/intechopen.96794 (accessed: 09.10.2024).

31. Bress K. S., Cascio C. J. Sensorimotor regulation of facial expression – An untouched frontier. Neuroscience & Biobehavioral Reviews. 2024; 162: 105684. doi: 10.1016/j.neubiorev.2024.105684 43.

32. Yamada T., Sugiyama G., Mori Y. Masticatory muscle function affects the pathological conditions of dentofacial deformities. Japanese Dental Science Review. 2020; 56 (1): 56–61. doi: 10.1016/j.jdsr.2019.12.001.

33. Kim, J. H., Yoon, H. J., Kim S., Kim K., Lee J., Park S. The digastric muscle: Its anatomy and functions revisited. International Journal of Morphology. 2023; 41 (5): 1501–1507. doi: 10.4067/S0717-95022023000501501.

34. Dommerholt J., Gerwin R. D. Contracture Knots vs. Trigger Points. Comment on Ball Ultrasound Confirmation of the Multiple Loci Hypothesis of the Myofascial Trigger Point and the Diagnostic Importance of Specifici-ty in the Elicitation of the Local Twitch Response. Diagnostics 2022, 12, 321. Diagnostics. 2022; 12 (10): 2365. doi: 10.3390/diagnostics12102365.

35. Widyadharma I. The role of oxidative stress, inflammation and glial cell in pathophysiology of myofascial pain. Advances in Psychiatry and Neurology. 2020; 29 (3): 180–186. doi: 10.5114/ppn.2020.100036.

36. Tianjun Z., Fengyan J., Yeping C., Lin S., Ming L. Advancing musculoskeletal diagnosis and therapy: a comprehensive review of trigger point theory and muscle pain patterns. Frontiers in Medicine. 2024; 11. doi: 10.3389/fmed.2024.1433070.

37. Baeumler P., Hupe K., Irnich D. Proposal of a diagnostic algorithm for myofascial trigger points based on a multiple correspondence analysis of cross-sectional data. BMC Musculoskeletal Disorders. 2024; 62 (2023). doi: 10.1186/s12891-023-06129-y.

38. Petrov K. B. Nespetsificheskie reflektorno-myshechnye sindromy pri patologii dvigatelnoy sistemy = Nonspecific reflex-muscular syndrome in pathology propulsion system. Novokuznetsk: Poly-graphist, 2019. 274 p. (In Russ.).

39. Lin L., Shi-Xuan L., Qiangmin H., Qiufang L., Yi L., Jingzhou Z., Shaoling S., Miao Y., Zhihong C. The key role of muscle spindles in the pathogenesis of myofascial trigger points according to ramp-and-hold stretch and drug intervention in a rat model. Frontiers in Physiology. 2024; 15. doi: 10.3389/fphys.2024.1353407.

40. Gerwin R. D. A New Unified Theory of Trigger Point Formation: Failure of Pre- and Post-Synaptic Feedback Control Mechanisms. International Journal of Molecular Sciences. 2023; 24 (9): 8142. doi: 10.3390/ijms24098142.

41. Blair J. Muscle Knots & Myofascial Trigger Points. URL: https://www.lsatherapy.co.uk/muscleknotts (accessed: 26.02.2025).

42. Partanen J. V., Lajunen H. R., Liljander S. K. Muscle spindles as pain receptors. BMJ Neurology Open. 2023; 5 (1): e000420. doi: 10.1136/bmjno-2023-000420.

43. Ball A., Perreault T., Fernández-de-las-Peñas C., Martín-Sacristán D., Ortega-Santiago D., Valera-Calero J. A., Sánchez-Milar S., Plaza-Manzano G. Ultrasound Confirmation of the Multiple Loci Hy-pothesis of the Myofascial Trigger Point and the Diagnostic Importance of Specificity in the Elicitation of the Local Twitch Response. Diagnostics. 2022; 12 (2): 321. doi: 10.3390/diagnostics12020321.

44. Sas D., Gaudel F., Verdier D., Monfoulet L., Benoliel M., Raboisson P., Woda A., Nargeot R., Bardeau B., Faure P. Hyperexcitability of muscle spindle afferents in jaw-closing muscles in experimental myalgia: Evidence for large primary afferents involvement in chronic pain. Experimental Physiology. 2024; 109: 100–111. doi: 10.1113/EP090769.

45. Cachinero-Torre A., Díaz-Pulido B., Asúnsolo-Del-Barco Á. Relationship of the Lateral Rectus Muscle, the Supraorbital Nerve, and Binocular Coordination with Episodic Tension-Type Headaches Frequently Associated with Visual Effort. Pain Medicine. 2017; 18 (5): 969–979. doi: 10.1093/pm/pnw292.

46. Navarrete M. L., Torrent M. L., Issa D., Valero J., Rodríguez A. The use of myofascial techniques (dry needle) for the treatment of maintained muscule contraction in peripheral facial palsy sequelae. Archives of Otolaryngology and Rhinology. 2019; 5 (3): 088–090. doi: 10.17352/2455-1759.000105.

47. Garrido L. C. F., Simonetti G., Saleh S. O. Anatomical Bases of the Temporal Muscle Trigger Points. BioMed Research International. 2024; 2024 (1): 6641346. doi: 10.1155/2024/6641346.

48. Kalladka M., Young A., Khan J. Myofascial pain in temporomandibular disorders: Updates on etiopathogenesis and management. Journal of Bodywork and Movement Therapies. 2021; 28: 104–113. doi: 10.1016/j.jbmt.2021.07.015.

49. Ang L., Jianxun Y., Xuejun L., Qiang Z., Meng L., Xiaohui F., Shuang W., Jie C., Christopher K., Cheng L., Yuqing Z. Distinct transcriptomic profile of satellite cells contributes to preservation of neuromuscular junctions in extraocular muscles of ALS mice. eLife. 2024; 12: RP92644. doi: 10.7554/eLife.92644.4.

50. Titova A., Nikolaev S., Bilyalov A., TyurinKuzmin M., Sheval E., Skulachev M., Skulachev V., Feniouk B. Extreme tolerance of extraocular muscles to disease and aging: why and how? International Journal of Molecular Sciences. 2024; 25 (9): 4985. doi: 10.3390/ijms25094985.

51. Kanukollu V. M., Sood G. Strabismus. StatPearls Publishing, 2025. URL: https://www.ncbi.nlm.nih.gov/books/NBK560782/ (accessed: 24.04.2025).

52. Shirakawa T., Miyawaki A., Kawamoto T., Sato H., Matsumoto Y., Ageta H., Tsuchida S., Inoue T., Takeda K., Hinoi Y. Natural Compounds Attenuate Denervation – Induced Skeletal Muscle Atrophy. International Journal of Molecular Sciences. 2021; 22 (15): 8310. doi: 10.3390/ijms22158310.

53. Pashov A. Myth: facial muscles will atrophy during Bell's palsy. URL: https://crystal-touch.nl/can-facialmuscles-atrophy-during-bells-palsy/ (accessed: 28.01.2025).

54. Pandey S., Mudgal J. A Review on the Role of Endogenous Neurotrophins and Schwann Cells in Axonal Regeneration. Journal of Neuroimmune Pharmacology. 2022; 17 (3–4): 398–408. doi: 10.1007/s11481-021-10034-3.

55. Woo S. H., Kim Y. C., Oh T. S. Facial palsy reconstruction. Archives of Craniofacial Surgery 2024; 25(1): 1–10. doi: 10.7181/acfs.2023.00528.

56. Ahuja R. B., Chatterjee P., Gupta R., Aggarwal R., Kumar S., Bajaj R. A new paradigm in facial reanimation for long-standing palsies? Indian Journal of Plastic Surgery. 2015; 48 (1): 30–37. doi: 10.4103/0970-0358.155265.

57. Petrov K. B. Kineziterapiya pri paralichakh mimicheskoy i yazykoglotochnoy muskulatury = Kinesitherapy for paralysis of mimic and glossopharyngeal muscles. Novokuznetsk: Poligrafist. 2020. 211 p. doi: 10.35076/npk.2020.94.55.001 (In Russ.).

58. Lysak A., Farnebo S., Geuna S., Rinklake K., Dahlin L.B. Muscle preservation in proximal nerve injuries: a current update. Journal of Hand Surgery (European Volume). 2024; 49 (6): 773–782. doi: 10.1177/17531934231216646.

59. Bashford J., Chan W. K., Coutinho E., Vincent A., Mallik C., Shaw C., Shinhmar S., Gorman M., Kazamel M., Manji H., Cleary S., Parton M., Palace J., Kleopa K., Farrugia M., Lunn M., Maddison P., Morrow G., Hutchinson M., Reilly M. Demystifying the spontaneous phenomena of motor hyperexcita-bility. Clinical Neurophysiology. 2021; 132 (8): 1830–1844. doi: 10.1016/j.clinph.2021.03.053.

60. Aguiar P. V., Silveira F., Vaz R., Costa J., Lima M. Perineal and foot muscle synkinesis following trauma to the sacrum in an adult male - A case of motor root ephaptic transmission? Clinic al Neurology and Neurosurgery. 2022; 219: 107340. doi: 10.1016/j.clineuro.2022.107340.

61. Duchateau J., Enoka R. M. Distribution of motor unit properties across human muscles. Journal of Applied Physiology. 2022; 132 (1): 1–13. doi: 10.1152/japplphysiol.00290.2021.

62. Sharlo K., Tyganov S. A., Tomilovskaya E., Shenkman V., Nemirovskaya T. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling International Journal of Molecular Sciences. 2022; 23 (1): 468. doi: 10.3390/ijms23010468.

63. Gordon T. Peripheral Nerve Regeneration and Muscle Reinnervation. International Journal of Molecular Sciences. 2020; 21 (22): 8652. doi: 10.3390/ijms21228652.

64. Kröger S., Watkins B. Muscle spindle function in healthy and diseased muscle. Skeletal Muscle. 2021; 11: 3. doi: 10.1186/s13395-020-00258-x.

65. Ivanichev G. A. Miofastsialnaya bol = Myofascial pain: monograph. Kazan: Kazan State Medical Academy; 2007: 392 p. (In Russ.).

66. Petrov K. B., Mitichkina T. V. Primitive reflexes of the spinal-stem level and their rehabilitation significance in post-stroke patients: a short report. Komorbidnaya nevrologiya = Comorbidity Neurology. 2024; 1 (2): 90–96. doi: 10.62505/3034-185x-2024-1-2-90-96 (In Russ.).

67. Vaitekutis G. V. Patologicheskie stvolovye sinkinezii, vyzyvaemye proizvolnymi dvizheniyami glaznykh yablok, pri organicheskikh porazheniyakh golovnogo mozga = Pathological brainstem synkinesis caused by voluntary movements of the eyeballs in organic lesions of the brain. URL: http://www.mif-ua.com/archive/article/14992 (accessed: 30.10.2024) (In Russ.).


Review

For citations:


Petrov K.B., Evdokimova O.O., Popova N.V. Morphofunctional and therapeutic aspects of facial and ocular motor synkinesia. Title. 2025;6(2):16-27. (In Russ.) https://doi.org/10.17021/2712-8164-2025-2-16-27

Views: 190

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-8164 (Print)