Preview

Title

Advanced search

Searching for multi-target substances with anti-microbial effect – promising direction modern pharmaceutical science

https://doi.org/10.17021/2712-8164-2024-1-14-22

Abstract

The article provides a review of literature data on the principles of creating multi-targeted drugs and their mechanisms of action, and analyses the results of studying the antimicrobial activity of quinazolinone derivatives that exhibit multi-targeted effects against bacteria of the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter). The search for substances that can affect several targets in a bacterial cell will be a way to solve the problem of pathogen resistance to antimicrobial agents used in modern medical practice.

About the Authors

A. A. Starikova
Astrakhan State Medical University
Россия

Alla A. Starikova - Senior Lecturer of the Department, Astrakhan State Medical University.

Astrakhan



D. V. Merezhkina
Volgograd State Medical University
Россия

Dar'ya V. Merezhkina - postgraduate student, Volgograd State Medical University.

Volgograd



A. A. Ozerov
Volgograd State Medical University
Россия

Alexandr A. Ozerov - Dr. Sci. (Chem.), Professor, Head of the Department, Volgograd State Medical University.

Volgograd



References

1. Belakhov V. V. Polyfunctional Drugs: Search, Development, Use in Medical Practice, and Environmental Aspects of Preparation and Application (A Review). Russian Journal of General Chemistry. 2022; 92 (13): 3030–3055. doi: 10.1134/S1070363222130047.

2. Gray D. A., Wenzel M. Multitarget approaches against multiresistant superbugs. ACS Infectious Diseases. 2020; 6 (6): 1346–1365. doi: 10.1021/acsinfecdis.0c00001.

3. Oselusi S. O., Fadaka A. O., Wyckoff G. J., Egieyeh S. A. Computational target-based screening of anti-MRSA natural products reveals potential multitarget mechanisms of action through peptidoglycan synthesis proteins. ACS Omega. 2022; 7 (42): 37896–37906. doi: 10.1021/acsomega.2c05061.

4. Albertini C., Salerno A., de Sena Murteira Pinheiro P., Bolognesi M. L. From combinations to multitarget‐ directed ligands: A continuum in Alzheimer's disease polypharmacology. Medicinal Research Reviews. 2021; 41 (5): 2606–2633. doi: 10.1002/med.21699.

5. Talevi A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Frontiers in Pharmacology. 2015; 6: 156790. doi: 10.3389/fphar.2015.00205.

6. Pravin N., Jozwiak K. Effects of linkers and substitutions on multitarget directed ligands for Alzheimer’s diseases: Emerging paradigms and strategies. International Journal of Molecular Sciences. 2022; 23 (11): 6085. doi: 10.3390/ijms23116085.

7. Geromichalos G. D., Alifieris C. E., Geromichalou E. G., Trafalis D. T. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery. Journal of the Balkan Union of Oncology. 2016; 21 (4): 764–779.

8. Rostom S. A. F., Ashour H. M., El Razik H. A., El Fattah Ael F., El-Din N. N. Azole antimicrobial pharmacophore-based tetrazoles: synthesis and biological evaluation as potential antimicrobial and anticonvulsant agents. Bioorganic & Medicinal Chemistry. 2009; 17 (6): 2410–2422. doi: 10.1016/j.bmc.2009.02.004.

9. Mendoza-Figueroa H. L., Serrano-Alva M. T., Aparicio-Ozores G., Martínez-Gudiño G., Suárez-Castillo O. R., Pérez-Rojas N. A., Morales-Ríos M. S. Synthesis, antimicrobial activity, and molecular docking study of fluorine-substituted indole-based imidazolines. Medicinal Chemistry Research. 2018; 27: 1624–1633. doi: 10.1007/s00044-018-2177-x.

10. Osarodion O. P. Synthesis and antibacterial activity of newly synthesized 7-chloro-2-methyl-4h-benzo[d][1,3]-oxazin-4-one and 3-amino-7-chloro-2-methyl-quinazolin-4(3H)-one. GSC Biological and Pharmaceutical Sciences. 2020; 11 (1): 212–220. doi: 10.30574/gscbps.2020.11.1.0110.

11. Abrusán G., Marsh J. A. Ligands and receptors with broad binding capabilities have common structural characteristics: an antibiotic design perspective. Journal of Medicinal Chemistry. 2019; 62 (21): 9357–9374. doi: 10.1021/acs.jmedchem.9b00220.

12. Waghmare S. M., Manchare A. M., Shaikh A. Y., Diksha R. G. Biological activity of quinazolinone derivatives: a review. International Journal of Current Pharmaceutical Research. 2023; 15 (1): 15–18. doi: 10.22159/ijcpr.2023v15i1.2074.

13. Gupta M., Dhanawat S. Quinazolinone: pharmacophore with endless pharmacological actions. European International Journal of Pedagogics. 2023; 3 (4): 33–36. doi: 10.55640/eijp-03-04-08.

14. Ahmed E. M., Khalil N. A., Zaher A. F., Alhamaky S. M., El-Zoghbi M. S. Synthesis, molecular modeling and biological evaluation of new benzo[4,5]thieno[3,2-b]pyran derivatives as topoisomerase I-DNA binary complex poisons. Bioorganic Chemistry. 2021; 112: 104915. doi: 10.1016/j.bioorg.2021.104915.

15. Mirgany T. O., Abdalla A. N., Arifuzzaman M., Motiur Rahman A. F. M., Al-Salem H. S. Quinazolin-4(3H)-one based potential multiple tyrosine kinase inhibitors with excellent cytotoxicity. Journal of Enzyme Inhibition and Medicinal Chemistry. 2021; 36 (1): 2055–2067. doi: 10.1080/14756366.2021.1972992.

16. Soliman A. M., Mekkawy M. H., Karam H. M., Higgins M., Dinkova-Kostova A. T., Ghorab M. M. Novel iodinated quinazolinones bearing sulfonamide as new scaffold targeting radiation induced oxidative stress. Bioorganic & Medicinal Chemistry Letters. 2021; 42: 128002. doi: 10.1016/j.bmcl.2021.128002 Get rights and content.

17. Samotrueva M. A., Ozerov A. A., Starikova A. A., Gabitova N. M., Merezhkina D. D. V., Tsibizova A. A., Tyurenkov I. N. Study of antimicrobial activity of new quinazolin-4(3Н)-ones against Staphylococcus aureus and Streptococcus pneumonia. Farmatsiya i farmakologiya = Pharmacy and Pharmacology. 2021; 9 (4): 318–329. doi: 10.19163/2307-9266-2021-9-4-318-329. (In Russ.).

18. Samotrueva M. A., Tsibizova A. A., Gabitova N. M., Ozerov A. A., Tyurenkov I. N. Antimicrobial activity of a new quinazoline derivative VMA-13-03. Eksperimentalnaya i klinicheskaya farmakologiya = Experimental and Clinical Pharmacology. 2020; 83 (8): 24–28. doi: 10.30906/0869-2092-2020-83-8-24-28. (In Russ.).

19. Agalave S. G., Maujan S. R., Pore V. S. Click chemistry: 1, 2, 3‐triazoles as pharmacophores. Chemistry – An Asian Journal. 2011; 6 (10): 2696–2718. doi: 10.1002/asia.201100432.

20. Ghorab M. M., Alqahtani A. S., Soliman A. M., Askar A. A. Novel N-(substituted) thioacetamide quinazolinone benzenesulfonamides as antimicrobial agents. International Journal of Nanomedicine. 2020; 15: 3161–3180. doi: 10.2147/IJN.S241433.

21. Bowroju S. K., Marumamula H., Bavanthula R. Synthesis of 2-(2-oxo-2H-chromen-3-yl)-3-phenylquinazolin-4(3H)-ones as potent antimicrobial and antitubercular agents. Chemical Data Collections. 2021; 35: 100744. doi: 10.1016/j.cdc.2021.100744 Get rights and content.

22. Song F., Li Z., Bian Y., Huo X., Fang J., Shao L., Zhou M. Indole/isatin‐containing hybrids as potential antibacterial agents. Archiv der Pharmazie. 2020; 353 (10): 2000143. doi: 10.1002/ardp.202000143.

23. Gupta N., Pandya P., Verma S. Methods in Pharmacology and Toxicolog. Springer Science + Business Media. 2018; 23: 149. doi: 10.1007/7653_2018_26.


Review

For citations:


Starikova A.A., Merezhkina D.V., Ozerov A.A. Searching for multi-target substances with anti-microbial effect – promising direction modern pharmaceutical science. Title. 2024;5(1):14-22. (In Russ.) https://doi.org/10.17021/2712-8164-2024-1-14-22

Views: 143

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-8164 (Print)